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A Nonlinear Fuzzy PID Controller via Algebraic 
Product AND - Bounded Sum OR - Algebraic 

Product Inference 
B. M. Mohan, NeethuKuruvilla 

 

Abstract—This paper reveals a mathematical model of the simplest fuzzy PID controller which employs two fuzzy sets (negative and 
positive) on each of the three input variables (displacement, velocity and acceleration) and four fuzzy sets (-2, -1, +1, +2) on the output 

variable (incremental control). L-type, Γ-type and -type membership functions are considered in fuzzification process of input and output 
variables. Controller modeling is done via algebraic product AND operator-bounded sum OR operator-algebraic product inference method-
Center of Sums defuzzificatiion process combination. The model obtained in this manner, turns out to be nonlinear, is analysed finally. 

Index Terms—PID control, nonlinear control, fuzzy control, mathematical modeling, algebraic product, bounded sum, center of sums 

(CoS). 

———————————————————— 

1 INTRODUCTION                                                                     

ONVENTIONAL (linear) PID controllers have been in 

extensive usage in industrial automation and process 

control. The reason behind this is their ease of design, low 

cost, simplicity of operation, inexpensive maintenance and 

effectiveness for most linear systems. These controllers 

generally do not work well for nonlinear systems, higher order 

linear systems and systems which are complex and vague 

having no precise mathematical models. To overcome this 

difficulty, various types of modified linear PID controllers 

such as auto tuned and adaptive PID controllers have been 

developed. Alternatively, controllers employing fuzzy logic 

have also been implemented sometimes.  

Let us now take a look at the historical developments in fuzzy 

control technology. A fuzzy PID controller has been 

constructed (Wang and Kwok, 1992) by combining a fuzzy PD 

controller and a fuzzy I controller in parallel. It has been 

shown (Mizumoto, 1995) that PID controllers can be realized 

by product-sum-gravity method and simplified fuzzy 

reasoning method. A new fuzzy PID controller structure has 

been proposed (Qiao and Mizumoto, 1996) and a parameter 

adaptive method via peak observer has been presented to tune 

the  

parameters of the fuzzy controller on-line. Analyrical structure   

for a fuzzy PID controller and its BIBO stability analysis has 

been studied (Misir et al, 1996). Fuzzy PI and fuzzy PD 

controllers have been combined in cascade to get a fuzzy PID 

controller (Kim and Oh, 2000).  

In order to improve the performance in transient and steady 

states, an adaptive method via function tuner has been 

developed (Woo et al, 2000) to tune the scaling factors of the 

fuzzy controller online. A tuning method, based on gain 

margin and phase margin specifications, has been proposed 

(Xu et al, 2000) for determining the parameters of the fuzzy 

PID controller. Several forms of decomposed PID fuzzy logic 

controllers have been tested and compared (Golob, 2001). A 

function based evaluation has been proposed (Hu et al, 2001) 

for a systematic study of fuzzy PID controllers. An adaptive 

method via relative rate observer has been proposed 

(Guzelkaya et al, 2003) for tuning the scaling factors of the 

fuzzy logic controller in an on-line manner.  

Mohan and Sinha (2006) have shown that algebraic product 

triangular norm - bounded sum triangular co-norm - algebraic 

product inference method –CoSdefuzzification method 

combination leads to a linear fuzzy PID controller. Mohan and 

Sinha (2008a) have shown that the analytical structures of 

fuzzy PID controllers derived via minimum triangular norm 

are not suitable for control. Mohan and Sinha (2008b) have 

introduced an analytical structure for fuzzy PID controller by 

employing algebraic product triangular norm, bounded sum 

triangular co-norm, minimum inference method and 

CoSdefuzzification method. They also have derived conditions 

for BIBO stability using Small Gain theorem. Since linear 

controllers are no better than nonlinear controllers in 

controlling nonlinear and complex plants, in this paper an 

attempt is made to derive anonlinear fuzzy PID controller 

using the same combination (i.e., algebraic product AND-

bounded sum OR-algebraic product inference-

CoSdefuzzification) and modified output membership 

functions. 

The paper is organized as follows: The next section deals 

with fundamental components of a typical fuzzy PID 

controller. Section 3 presents a mathematical model of 

nonlinear fuzzy PID controller. Properties of the model are 
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discussed in Section 4. Section 5 concludes the paper. 

2    COMPONENTS OF FUZZY PID CONTROLLER  

The incremental control signal generated by a discrete 

time PID controller is given by:

( ) ( ) ( 1)

         ( ) ( ) ( )           (1)

u k u k u k

d d dK v k K d k K a k
P I D

 

where dKd
IKd

PK D and , are respectively the proportional, 

integral and derivative constants of a digital PID controller 

and velocity v(k), displacement d(k) and acceleration a(k) are 

given by: 

 

v(k) ={d(k)- d[(k-1)]}/T(2) 

d(k) = e(k)                                         (3) 

a(k) = {v(k)- v[(k-1 )]}/T                          (4) 

e(k) is the error signal, r(k) is the reference command, y(k) is 

the plant output, k is the sampling instant, and T is the 

sampling period. Eq.(1) is known as 'velocity algorithm' and is 

widely used. The principal structure of a fuzzy PID control, 

see Fig.1, consists of the following components:

 
 

2.1  Scaling Factors 

Let ds(k), vs(k) and as(k) be thescaled versions of d(k), v(k) and 

a(k) respectively. Then 

ds(k)=Sdd(k)                (5) 

vs(k)=Svv(k)               (6) 

as(k)=Sa a(k)              (7) 

whereSd, Sv and Sa are the scaling factors which play a role 

similar to that of dKd
IKd

PK D and , in a conventional PID 

controller. 

2.2  Fuzzification 

Fuzzification process converts crisp values of controller scaled 

inputs into fuzzy sets that can be used by the inference engine 

(refer Section 2.4) to activate and apply the control rule. 

As shown in Fig.1, fuzzy PID controller has three 

scaledinputs: ds(k), vs(k) and as(k). These inputs are fuzzified by 

L-type and Γ-type membership functions as illustrated in Fig. 

2. These membership functions on ds(k) are defined by: 
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Fig. 1. A typical fuzzy PID controller 

Fig. 2. Input membership functions 
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It may be noted that 

1DD

 

Membership functions on vs(k) and as(k) can be defined in 

a similar manner.  The membership functions (L-type, 

and Γ-type) on Δu(k) are shown in Fig. 3. The constants ld, 

lv, la, Ld, Lv, La, lu,, Lu and w are to be chosen by the designer.  

 

Fig. 3. Output trapezoidal membership functions (reference 

fuzzy sets: U-2, U-1, U+1, U+2; inferred fuzzy sets: u-2, u -1, u+1, u+2 

obtained via algebraic product inference) 

2.3  Control Rule Base 

The following control rules are considered in terms of 

the aforementioned input and output fuzzy sets: 

 

R1: If dS is –D &vS is –V &aS is -A then Δu is U-2 

R2: If (dS is –D &vS is –V &aS is +A) / 

         (dS is -D &vS is +V &aS is –A) /  

        (dS is +D &vS is -V &aS is –A) then Δu isU-1 

R3: If (dS is –D &vS is +V &aS is +A) /  

         (dS is +D &vS is –V &aS is +A) /  

       (dS is +D &vS is +V &aS is –A) then Δu is U+1 

R4:If dS is +D &vS is +V &aS is +A then Δu is U+2 

where the & symbol represents algebraic product 

ANDoperation which is defined as: 

( ) & ( ) & ( ) ( ) ( ) ( )i S j S k S i S j S k Sd v a d v a
 

With AAkVVjDDi , and ,,, . The / symbol 

in rules R2 and R3 represents bounded sum OR operation 

defined as 

1 2 3
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Notice that the control rules are nonlinear as the output fuzzy 

sets are not linearly related to the input fuzzy sets. 

2.4 Inference Engine 

Overall value of incremental control output variable is 

computed by the inference engine by considering the 

individual contribution of each rule in the rule base. For this, 

corresponding to each rule, first the degree ofmatch from the 

crisp input values is found by using the algebraic product 

AND operator. Then the degree of match is used to determine 

the inferred output fuzzy set using algebraic product inference 

method, see Fig. 3.  

We consider all possible combinations of these variables in a 

3D space. A point, say (xl ,yl , zl), in a 3D space can always be 

distinctly shown by taking its projection on the xy-, yz-   and 

zx-  planes. So, as shown in Fig. 4, thirteen input combinations 

are considered in each input (dSvS-, vSaS- andaSdS-) plane so that 

the input point *, *, *s s s(d v a ) can be uniquely located in the 3D 

cell (subspace)  represented by the triplet )nn(n ,,  where 

nnn ,, = 1,9,10,. .. , 20. For example, the triplet (9, 11, 19) 

represents the 3D cell with 9 from I, 11 from II, and 19 from III 

of Fig. 4.  

The control rules RI to R4 are used to evaluate appropriate 

control law in each valid cell )nn(n ,, . By using the 

algebraic product triangular norm and the bounded sum 

triangular co-norm, the outcome of premise part of each rule is 

found in each valid cell and is shown in Table.1. A cellis said to 

be valid if and only if the relations between dS and vS, and aS 

and vS produce the relation between aS and dS. For example, 

the cell (9, 11, 19) is a valid cell because the relations 

asasvdsd laLvlLdl ,0, produce the relations

 and .a s a d s dL a l l d L
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Fig.4. Regions of input planes 
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2.5 Defuzzification 

Defuzzification process converts fuzzy information into crisp 

information. According to CoS method, the incremental 

control output is given by  

)()()()(
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whereA( )  and C( ) are respectively the area and centre of area 

of the inferred output fuzzy set. From Fig. 3 we have  
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 3    MATHEMATICAL MODEL 

Upon substituting areas A’s and centers of areas C’s in Eq.(13), 

we have in inner cuboid i.e., (1,1,1)

 1
( ) ( ) ( ) ( )       (14)
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4       PROPERTIES OF THE MODEL 

In the previous section, the mathematical model, Eq.  (14), has 

been presented for the fuzzy PID controller when all the three 

scaled inputs are inside the cuboid. 

1.   The control surface generated by Δu(k) is continuous at 

any point in the 3D input space. 

2. The incremental control output Δu(k) increases as the 

distance of the point (dS, vS, aS) from the origin in the 3D 

input space increases. 

3. By comparing Eq. (14) with Eq. (1) one can recognize that 

fuzzy controller is very much similar in structure to the 

linear controller. Since Nd, Nv, Na and D are nonlinear 

functions of scaled inputs dS(k), vS(k) and aS(k), the fuzzy 

PID controller is a nonlinear PID controller with the 

variable gains given by  

KPd=Nv/(54D);  Kid=Nd/(54D);  KDd=Na/(54D).  

In the case of linear PID controller the gains dKd
IKd

PK D and ,

(13) 
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are constants.  

4. The minimum incremental control effort produced by the 

fuzzy controller is given by Eq. (15) while Eq. (16) gives 

the maximum incremental control effort.  

 

 

 

 

 

 

 

 

 

(+):  (-D)(-V)(-A) 

(-):  (-D)(-V)(+A)+(-D)(+V)(-A)+(+D)(-V)(-A) 

( ): (-D)(+V)(+A)+(+D)(-V)(+A)+(+D)(+V)(-A) 

( ): (+D)(+V)(+A) 

5     CONCLUSIONS 

In this paper, a mathematical model for a fuzzy PID controller 

has been derived using L-type,  Γ-type and -type fuzzy  

 

membership functions, algebraic product triangular norm, 

bounded sum triangular co-norm, algebraic product inference 

method, modified output membership functions and 

CoSdefuzzification method. The model obtained is shown to 

be nonlinear whereas the model (Class I model) in Mohan and 

Sinha (2006) was indeed a linear model. The (modified) 

membership functions considered in Fig. 3 could lead to this 

difference in the end result. 

Table 1. Outcomes of algebraic product AND and bounded sum OR 
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